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NUMERICAL SIMULATION OF PLASMA DYNAMICS

IN A NONUNIFORM MAGNETIC FIELD

UDC 517.958:537.84V. T. Astrelin,1 A. V. Burdakov,1 V. M. Kovenya,2

and T. V. Kozlinskaya3

An efficient algorithm is proposed enabling numerical simulations of plasma dynamics in a nonuni-
form magnetic field. The present numerical data are in good agreement with experimental data
obtained in a GOL-3 setup and with previous simulations. The experimentally observed effect of fast
transfer of energy to ions is confirmed.
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Introduction. In GOL-3 experiments on plasma heating and confinement in a multiple-mirror trap, fast
heating of plasma is ensured by a relativistic electron beam with an energy up to 1 MeV (current up to 30 kA,
duration up to 8 µsec, and energy up to 120–150 kJ) [1]. A deuterium-plasma column of density n ≈ 1015 cm−3,
length of 12.3 m, and diameter of 4–5 cm is formed in a corrugated magnetic field consisting of 55 cells, each 22 cm
long, with a magnetic ratio Bmax/Bmin = 5.2/3.2 T. The plasma column is confined by edge magnetic mirrors with a
magnetic field of B′

max ≈ 9 T. Collective heating of the plasma by the beam proceeds under conditions of developed
Langmuir turbulence and lengthwise electron heat conduction being suppressed by turbulent electric fields; in the
corrugated field, such a situation gives rise to periodic longitudinal modulation of the electron temperature and
pressure. The pressure gradient initiates formation and acceleration of plasma flows toward the centers of magnetic
cells. Experiments showed that collisions between the flows result in neutron outbursts of thermonuclear nature,
followed by fast thermalization of the directional energy of plasma motion accompanied by neutron emission [1].
Measurements confirmed a fast growth of ion energy (up to 1–2 keV for the period of beam action), which could
not be explained by the Coulomb electron–ion collisions. To investigate the above-mentioned mechanism of fast
transfer of energy to ions, the dynamics of a two-component plasma was numerically simulated in [2] with the use
of traditional computational algorithms [3] in the hydrodynamic approximation, because the ion temperature in
the plasma generated by a direct discharge in deuterium is low at the initial stage of heating and the free path of
ions is much shorter than the length of one cell in the multiple-mirror trap. As a numerical analysis showed and
an experiment confirmed [1], the dynamics of the plasma under such conditions is accompanied by generation of
high-amplitude nonlinear waves, which requires more efficient algorithms to be developed to model the process of
interest.

To numerically solve strongly nonlinear problems, algorithms with enhanced stability, capable of predicting
solutions over long time intervals, are required (see [4]). Such algorithms can be developed on the basis of predictor–
corrector schemes, where the required stability is ensured at the predictor stage and conservatism is re-established
at the corrector stage, thus providing for satisfaction of differential conservation laws. A predictor–corrector scheme
was proposed in [5, 6] for the numerical solution of gas-dynamic equations. The technique of splitting in terms of
physical processes was used at the predictor stage in this scheme, which is used as the basic one in the present study.
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To ensure the second order of approximation over all variables, the starting equations were approximated at the
corrector stage by symmetrical operators and a smoothing operator of the second-order smallness was introduced
to retain monotonicity, as this was done in [7]. Test computations proved the scheme to be quite accurate and
efficient.

Plasma heating with parameters close to the conditions of GOL-3 experiments with different configurations
of the magnetic field was modeled in the present study with the use of the scheme described above. The numerical
data obtained were compared with experimental results and data predicted by previous algorithms [1, 8].

Physicomathematical Model. The plasma dynamics is governed by the equations of continuity and
motion (in the magnetized-plasma approximation) and by the energy equations for ions and electrons, which can
be written in the following form for one-dimensional motion (see [2, 9, 10]):
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System (1) is closed by the equations of state pi = nkTi and pe = nkTe. The following notation is used: t is the
time, z is the longitudinal coordinate along the line of magnetic force, n and V are the plasma density and velocity,
M and m are the ion and electron masses, M = 2Mp (Mp is the proton mass), B is the magnetic induction, Te

and Ti are the electron and ion temperatures in the plasma, T = Te + Ti, p = pi + pe is the total pressure in the
plasma, κe = Fe(Zeff)nkTeτe/(ζm) and κi = Fi(Zeff)nkTiτi/M are the longitudinal thermal conductivities with the
collisional times τe and τi defined by the formulas [10]
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Zeff is the effective ion charge due to impurities (Zeff ≈ 1), the parameters Fe ≈ 3.9 and Fi ≈ 4.4 allow for variation
of transport cross sections in the plasma with multicharged ions, k is the Boltzmann constant, λ is the Coulomb
logarithm (in the case of interest, λ ≈ 13), ζ is the heat-conduction suppression coefficient defined by the level of
turbulence in the plasma: ζ = 1 + (ζmax − 1)(P (t)/Pmax)2R(n), ζmax ≈ 102–103 (experimentally found values),
P (t) is the beam power, Pmax is the maximum beam power, R(n) = f(nb/n) is the experimentally measured loss
in the beam energy, dependent on the ratio nb/n and vanishing at beam-plasma instability increments lower than
the electron–electron collisional frequency:

R(n) = max{0, 1 − ln (neff(z)/n∗)/ ln (ncr/n
∗)}.

Here neff(z) = max (0.8, n(z)B0/B(z)), ncr ≈ (2–3) · 1015 cm−3 is the critical plasma density above which no beam-
induced turbulent heating of the plasma occurs, and n∗ ≈ 0.8 · 1015 cm−3 is the plasma density below which the
beam-energy losses in the heated plasma become almost independent of its density.

If the mean path of particles is commensurable with, or greater than, the pressure-nonuniformity length,
one can use an approximate algorithm restricting the thermal conductivity by a restraint factor ξα(κα):

κ
eff
α = καξα(κα) = κα,max(1 − exp (−κα/κα,max)).

Here κα,max = qα,max/|dTα/dz|, qα,max = 3/(2
√
π )(nTαVT,α) is the maximum possible heat flux due to particles,

and VT,α = (2kTα/mα)1/2 is the thermal velocity of particles; α = e, i is the type of particles.
The sources Qe,i describe the variation of energy in the plasma components

Qe = Q0 + nνe/i
ε (Ti − Te), Qi = nνi/e

ε (Te − Ti), (2)

where νe/i
ε = ν

i/e
ε = 4.75 · 10−9Z2

effnλMp/(MT
3/2
e ) [cm3/sec] is the electron–ion collisional frequency. The term Q0

in Eq. (2) describes plasma heating by electrons of the beam (with an efficiency η1) and by epithermal electrons
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of the plasma, generated by the beam during its turbulent interaction with the plasma, whose typical energy
(“temperature”) is Th ≈ 10 keV (with an efficiency η2):

Q0 =
P (t)B(z)
S0B∗

0L
[η1Reff(n, z) + η2Φ(n, z, Th)].

Here Reff(n, z) = AR(n)(1 + (Kn − 1)l0/(z + l0)), Kn and l0 are parameters that characterize the longitudinal
heating nonuniformity resulting from beam spreading over velocities in the plasma (in the experiment, Kn ≈ 2.9
and l0 = 2 m), B∗

0 is the magnetic induction in the section S0, L is the length of the system, and A is a normalization

factor such that
1
L

L∫

0
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The component Φ describes plasma heating due to relaxation of the fast “tail” of plasma electrons:
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Here ε′ = ε/Th is the dimensionless energy of fast electrons, ε′min is the energy at which the mean path of

electrons R0(ε) [cm−2] = 2.5 · 1018 · ε2 [keV]/λ equals 〈nl〉 =

z∫

0

n(l) dl, ξ = 〈nl〉/R0(ε), and ψ(ξ, ε′) = 3.39

× (0.01 + ξ)0.25 exp (−6ξ2.5 − ε′) is the dimensionless function of energy absorption for epithermal electrons in the
target. The coefficient 0.85 takes into account partial reflection of epithermal electrons from the edge magnetic
mirrors.

For convenience of numerical integration, we bring Eq. (1) to dimensionless form by choosing the follow-
ing quantities typical of the initial state of the plasma as the starting parameters: length L0 = 102 cm, time
t0 = 10−6 sec, velocity V0 = 108 cm/sec, magnetic field B0 = 1 T, density n0 = 1015 cm−3, temperature T0 = 103 eV,
and beam power P0 = 109 W. All quantities below are mostly presented as dimensionless quantities.

The functions to be found are chosen to be the plasma density and velocity, the ion pressure, and the total
pressure. Then the system under consideration can be written in dimensionless form as
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We rewrite system (3) in the vector form
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We seek for the solution of system (4) in the domain Π = {z0 � z � L, t > 0}. The boundary conditions
at the edges of the system, controlled by free outflow of the plasma through the edge magnetic mirrors, can be
approximately represented as follows (see [2]):
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Initially, the system is filled by a cold plasma:

T0e,i = 1 eV, n0 = 1015 cm−3, V0 = 0.

Difference System. The domain Π is covered by a computational grid with constant steps h and τ . The
operator Ω is approximated by the difference operator Ωh:
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Λ±fj = ±(fj±1 − fj)/h is the approximation of the first derivative, with due regard for the sign of V l, with the
order O(h), and ΛaΛ is the approximation of the second derivatives by a three-point symmetric operator. As in
[5, 6], the operator Ωh is represented as the sum Ωh = Ω1h + Ω2h, where
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With the notation used, the difference scheme

f l+1/4 − f l
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(6)

approximates the starting equations (4) with the order O(τm + τh + hk), where m = 2 for α = 0.5 + O(τ) and
m = 1 for α �= 0.5; k is the order of approximation of the operator Ωh at the corrector stage. To improve the
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computation accuracy, we approximate the operator Ω at the corrector stage by a symmetric operator with the
second order. Then, the difference scheme (6) approximates the starting equations (4) with the order O(τ2 + h2)
at α = 0.5 + O(τ). By virtue of the symmetric approximation of the vector of the operator Ω̃h, the scheme turns
out to be nonmonotonic; to eliminate oscillations, a smoothing second-order operator is introduced at the corrector
stage, as was done in [7]:

Λaf =
(af)j+1 − (af)j−1

2h
− h

2
bj+1/2Λ+fj − bj−1/2Λ−fj

h
. (7)

Here bj±1/2 = (bj±1+bj)/2 and bj = ε2|aj |; ε = 0 if d = 0 and ε = |fj+1−2fj+fj−1|/d if d = |fj+1−fj|+|fj−fj−1|.
In the linear approximation with F = 0, the difference scheme (6) is unconditionally stable for α � 0.5. As

it follows from the form of the matrix operators Ωjh, this scheme is implemented through scalar three-point sweeps
at fractional steps and in an explicit manner at the corrector steps.

Note that the solution stability and the possibility of simulating the formation and collision of strongly
nonlinear waves in previous algorithms were provided by introducing an artificial viscosity and by smoothing local
disturbances arising in the difference scheme used [2], which could affect the quality of the data obtained. The
algorithm described above involves no artificial viscosity.

Schemes (4)–(7) were tested by solving two problems: the Riemann problem and a steady flow through a
variable-section channel. In the first problem, the initial and boundary conditions were set as follows:

n(z, 0) = 1, V (z, 0) = 0, p(z, 0) = 1 for −4 � z � 0;
n(z, 0) = 0.125, V (z, 0) = 0, p(z, 0) = 0.1 for 0 < z � 6;

n(−4, t) = 1, V (−4, t) = 0, p(−4, t) = 1, n(6, t) = 0.125, V (6, t) = 0, p(6, t) = 0.1.

Note that system (6) with F ≡ 0 and pi = p, pe = 0, and ζ̃i = ζ̃e = 0 is a gas-dynamic system in a
quasi-one-dimensional approximation, with B−1 understood as the cross-sectional area of the channel. Obviously,
for B = const, Eqs. (4) form a system of one-dimensional time-dependent gas-dynamic equations.

Figure 1 shows the data computed by the second-order scheme (6) with the smoothing operator (7) at the
time t = 2.5 on a computational grid containing 200 nodes over z with α = 0.505. The solid and dotted curves
show the exact solution and the numerical solution, respectively. The shock wave is seen to be smeared over 2–3
nodes, and the contact discontinuity is spread over 6 nodes. The scheme adequately predicts the velocities of the
shock and rarefaction waves. A similar result was also obtained with the first-order scheme; in the latter case,
however, the contact discontinuity is spread over 10–12 nodes. The computations were performed for the Courant
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number k = max (τ |V ± c|/h) = 1. All data below were also obtained by the second-order scheme with solution
monotonization.

In the problem of a quasi-one-dimensional steady flow through a variable-section channel described by the
formula B(x) = 0.5+0.5(1−2x)2 (0 � x � 1), the solution was obtained numerically by a time-dependent method.
Initially (t = 0), the values of the function at the channel entrance and exit were set to satisfy the exact solution
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The solution involves a discontinuity of gas-dynamic quantities. Figure 2 shows the exact and numerical solutions
(solid and dotted curves, respectively) after stabilization of the solution by scheme (6) on a computational grid
consisting of 200 nodes. As the computed data show, the proposed scheme allows obtaining fairly accurate solutions
of stationary and nonstationary problems with flow discontinuities and singularities.

Simulation of Plasma Heating and Motion. To test the algorithms and their capability in modeling the
plasma-heating mechanism within the framework of the proposed physical model [2], we simulated plasma dynamics
under conditions of a special GOL-3 experiment with a single magnetic cell [11, 12]. Undisturbed values of the
sought quantities were initially (t = 0) set in a channel of length L = 12.32 m: n = 1, V = 0, and Ti = Te = 0.001.
The external magnetic field was specified as B = 2 + cos (2(z − 1.5π)) for 1.5π � z � 2.5π and as B = 3 for
0 � z � 1.5π and 2.5π � z � 12.3. The system was assumed to be open, to admit free outflow of the plasma at
the channel edges, and to satisfy the boundary conditions (5). To find the numerical solution of Eqs. (4), we used
the predictor–corrector scheme (6) with the order O(τ2 + h2). The computational grid contained 400 modes over
the coordinate z. As was noted above, the difference scheme (6) is unconditionally stable in the absence of external
forces. Yet, with external sources F , which were explicitly computed at the corrector stage, the difference scheme
can lose the property of unconditional stability. In the latter case, the time parameter τ can be found from the
scheme stability in terms of the right side. Owing to the contribution of beam-induced heating to the source term F ,
the latter becomes the determining term in the energy equation, prevailing over convective and other terms. In
this situation, the electron temperature sharply increases (approximately by a factor of 1000). The computations
were performed for the Courant number k ≈ 0.01–0.1 admitted by stability of the scheme. Figure 3 shows the
distributions of velocity, density, electron temperature, and total temperature at the times t = 1, 2, 3, and 4 µsec
(curves 1, 2, 3, and 4, respectively) for the prescribed distribution of the magnetic field.
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In accordance with the hypothetical mechanism of ion acceleration and with the GOL-3 experimental data
(see [11]), the plasma is heated nonuniformly by the electron beam because of the magnetic-field nonuniformity:
the temperature increases rather appreciably at the edges of the mirror system and to a smaller extent at the center
of the well. The nonuniformity of pressure results in acceleration of the plasma toward the center of the cell. At
t > 4 µsec, the two flows collide and, as estimates show, penetrate each other.

Within the framework of the single-velocity model under consideration, the computations by the above-
described algorithm yielded the following results. In solving the problem, the electron-beam-induced plasma heating
causes a substantial (by a factor of 1000) increase in electron temperature of the plasma; the maximum increase is
observed outside the magnetic well (see Fig. 3). The ion temperature increases approximately tenfold and reaches its
maximum values at the edges of the magnetic well. Owing to plasma acceleration toward the center of the magnetic
well, the density increases in the well (by a factor of 2.8 compared to the initial data) and decreases outside the
well. The total pressure is completely determined by the electron pressure: it increased to a greater extent at the
well edges of the well than in the center. The maximum kinetic energy of accelerated ions reaches approximately
0.3–0.5 of the electron temperature, which is consistent with experimental observations. The numerical solution
is both qualitatively and quantitatively close to those obtained in the experiment and in previous simulations (see
[2, 11]) up to the time t = 4 µsec. For times t > 4 µsec, however, the computations predict that two plasma flows
collide at the center of the well, causing a drastic increase in temperature and pressure. The single-velocity model
becomes invalid for such times, and multiflow models should be used to compute such flows.
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Result Computed for a Multiple Mirror Magnetic-Field Configuration. To test the algorithms and
examine the mechanism of collective acceleration of ions, we also solved the problem with a periodic magnetic field
close to that in the GOL-3 multiple mirror trap. Two goals were pursued in the simulation. The first goal was to
expand the stable solution domain, which was significantly restricted by the capability of previously used numerical
algorithm in earlier computations. The second goal was to examine the influence of the degree of nonuniformity of
electron-beam-induced heating on the longitudinal uniformity of ion acceleration (in the model, this influence can
be specified using experimentally measured data).

In the simulation, the external magnetic field in each field cell was set as B = 4.2 + cos (2πz/0.22) [T] in the
interval 0.11 � z � 12.21 and B = 6.1 +2.9 cos (2πz/0.22) [T] outside this interval. This definition corresponded to
a multiple mirror trap with a total length of 12.32 m, which was restricted by two edge mirrors with a magnetic field
of 9 T. The system contained a total of 56 such magnetic cells spaced by 22 cm. The computational grid consisted
of 1000 nodes over the coordinate z. Each cell contained 18 nodes. Undisturbed values of the sought quantities
were initially set in a channel of length L = 12.32 m: n = 1.5 · 1015 cm−3, V = 0, and Te = Ti = 1 eV. Figure 4
shows the distributions of velocity, density, electron temperature, and total temperature T = Te + Ti at the times
t = 0.5, 1, 1.5, and 1.8 µsec (curves 1, 2, 3, and 4, respectively) in the corrugated magnetic field.

As the density of the magnetized beam varies in proportion to the magnetic field, the ratio nb/n, which
determines the efficiency of heating of plasma electrons also periodically varies along the system at t = 0. At the
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ends of each cell, where the magnetic field is high, effective heating of the plasma by the beam is observed. At
the center of each cell, the beam-to-plasma density ratio becomes lower than the value required for development of
beam-plasma turbulence, and the local heating of the plasma is much lower. As a result, the developing electron-
pressure nonuniformity accelerates the plasma toward the midplane, giving rise to accelerated ion counter-flows from
regions with a high magnetic field in each cell toward its midplane. The collective acceleration of ions observed
enhances their kinetic energy to values comparable with the thermal energy of electrons to values comparable with
the thermal energy of electrons in a time shorter than the beam duration. The distribution of plasma parameters
obtained in the present computations complies with simulation data previously obtained by other algorithms up to
computation times of 1.8 µsec. The proposed hydrodynamic model for the multiple mirror trap is valid only till the
moments at which plasma counter-flows collide. Like in the case of the single-cell magnetic-field configuration, one
has to use multiflow or kinetic models for times t > 1.8 µsec.

Conclusions. A physicomathematical model is proposed to predict strongly nonlinear processes in the
dynamics of high-temperature plasma under electron-beam heating confined in an open trap with a nonuniform
magnetic field. Highly efficient algorithms based on the splitting technique are developed and tested. The accuracy
of the algorithms is estimated by solving problems with discontinuous solutions. Actual GOL-3 experiments are
numerically simulated. Good agreement between the present simulation data and result obtained in experiments and
in previous simulation studies is reached. The latter proves the capability of the chosen physicomathematical model
to predict the mechanism of plasma heating up to the moment the plasma flows collide with each other. Validity
of the chosen model and adequacy of numerical data obtained by different numerical algorithms are demonstrated.
The experimentally observed effect of fast transfer of energy to ions is confirmed. The necessity of application of
kinetic models for predicting plasma dynamics over long times is shown.

This work was partially supported by the Russian Foundation for Basic Research (Grant No. 05-01-00146a)
and by the Siberian Division of the Russian Academy of Sciences (Integration Project Nos. 148 and 162).
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